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Abstract. Understanding invasive species spread and projecting how distributions will respond to cli-
mate change is a central task for ecologists. Typically, current and projected air temperatures are used to
forecast future distributions of invasive species based on climate matching in an ecological niche modeling
approach. While this approach was originally developed for terrestrial species, it has also been widely
applied to aquatic species even though aquatic species do not experience air temperatures directly. In the
case of lakes, species respond to lake thermal regimes, which reflect the interaction of climate and lake
attributes such as depth, size, and clarity. The result is that adjacent waterbodies can differ notably in ther-
mal regime. Given these obvious limitations of modeling aquatic species distributions using climate data,
we take advantage of recent advances in simulating lake thermal regimes to model the distributions of
invasive spiny water flea (Bythotrephes cederstromii) for current and projected future climates in the upper
Midwest of the USA. We compared predictions and future projections from models based on modeled air
temperatures with models based on modeled water temperature. All models predicted that the number of
suitable lakes in the region will decrease with climate change. Models based on air and water temperature
differed dramatically in the extent of this decrease. The air temperature model predicted 89% of study
lakes to be suitable, with suitability declining dramatically in the late century with climate warming to just
a single suitable lake. Lake suitability predictions from the water temperature model declined to a much
lesser degree with warming (42% of lakes were predicted to be suitable, declining to 19% in the late cen-
tury) and were more spatially independent. Our results expose the limitations of using air temperatures to
model habitat suitability for aquatic species, and our study further highlights the importance of under-
standing lake-specific responses to climate when assessing aquatic species responses to climate change.
While we project a contraction in the potential range of Bythotrephes with warming in the study region, we
anticipate that Bythotrephes will likely continue to expand into new lakes that will remain suitable in the
following decades.
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FRESHWATER ECOLOGY

INTRODUCTION

Predicting the spread of invasive species as the
climate changes is a fundamental challenge for
ecology (Peterson and Vieglais 2001, Guisan and
Thuiller 2005, Wiens et al. 2009, Elith et al. 2010).
Such studies are often carried out at broad (re-
gional to continental) spatial scales and use cur-
rent and future climate to estimate suitable
habitat for species (e.g., Hijmans et al. 2005, Hij-
mans and Graham 2006). Given that freshwater
systems are particularly vulnerable to the
impacts of invasive species (Moorhouse and
Macdonald 2015), this ecological niche modeling
approach has also been widely applied to assess-
ing habitat suitability for and forecasting spread
of aquatic invasive species (e.g., Sharma et al.
2007, Montecino et al. 2014, Culumber and
Tobler 2018).

One obvious limitation of models based on air
temperatures is that aquatic species do not experi-
ence air temperatures directly—they experience
water temperatures. Water temperatures are influ-
enced by climate, but the effect of climate is medi-
ated by lake attributes such as lake surface area,
depth, morphometry, and water clarity (Rose
et al. 2016). Moreover, many lakes exhibit thermal
stratification, meaning that near-surface tempera-
ture dynamics become decoupled from those of
deeper waters. Lake thermal regime refers to how
temperature varies in lakes with depth over time.
While thermal regimes tend to vary along climate
gradients (e.g., high-latitude lakes are on average
colder than low-latitude lakes), adjacent lakes
experiencing the same climate can differ notably
in thermal regimes due to these lake-specific char-
acteristics (Fee et al. 1996, Benson et al. 2000, Read
and Rose 2013, O'Reilly et al. 2015, Rose et al.
2016). Lake warming in response to climate
change also differs among lakes. As an example,
large and deep ice-covered lakes are warming fas-
ter than air temperatures, contrasting with smaller
and shallower lakes that track more closely with
air temperatures (O'Reilly et al. 2015). As a result,
the most rapidly warming lakes are distributed
globally rather than co-located geographically in
the locations with the most rapidly warming air
temperatures (O'Reilly et al. 2015). This lake-to-
lake variation in how lakes respond to a changing
climate may have important implications for how
aquatic species respond to climate change.
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In light of the above, we would expect that the
traditional climate-based approach to ecological
niche modeling should be limited in utility for
modeling aquatic invasive species distribution at
fine spatial resolutions such as that of individual
lakes. A recent study simulated lake thermal
regimes for current conditions and under future
climate change scenarios for thousands of lakes
across the upper Midwest region of the USA
(Winslow et al. 2017). Lake-specific thermal
regimes estimated for many thousands of lakes
provide an opportunity to develop ecological
niche models based on the thermal environment
experienced by organisms, in turn providing a
more direct physiological connection to organ-
isms of interest.

In this study, we develop ecological niche
models in order to predict suitable habitat for
spiny water flea (Bythotrephes cederstromii;
Korovchinsky and Arnott 2019) under current
and future climate scenarios. Bythotrephes is an
invasive predatory zooplankter that has spread
and had adverse ecological and economic
impacts across lakes of central North America
(Yan et al. 2011, Walsh et al. 20164a). The impor-
tance of thermal conditions has been well-docu-
mented for this species, which does not tolerate
summer temperatures above 25°C (Garton et al.
1990, Yurista 1999, Kim and Yan 2010, Kerfoot
et al. 2011). In this way, climate change may lead
to a reduction in the number of Bythotrephes suit-
able sites in the region. In addition to traditional
ecological niche models based on air tempera-
tures, we also develop models based on modeled
lake thermal regimes. Lake thermal regimes
respond to climate warming in complex ways
that do not necessarily follow clear latitudinal
gradients (Winslow et al. 2017), and this hetero-
geneity may lead to similarly heterogeneous pat-
terns in Bythotrephes suitability (Fig. 1).

METHODS

Approach and study region

We used an ecological niche modeling
approach to compare lake suitability for Bytho-
trephes under historical and projected future con-
ditions modeled using either air temperatures
from downscaled climate models or water tem-
peratures simulated in over 10,000 lakes in Min-
nesota, Wisconsin, and Michigan. This region
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Fig. 1. Aquatic species ecological niche modeling is traditionally conducted using air temperatures and global
climate models as proxies for lake temperature (1). However, lakes vary widely in their response to climate. As
an example, we plot the thermal profiles (how temperature varies by depth over time) of three lakes in central
and south-central Wisconsin with nearly identical air temperatures (Climate) that differ in their thermal regime
(thermal profile heat maps with an inverted y-axis to represent water depth in the lake, warmer colors indicate
warmer temperatures). Example data are from modeled lake temperatures and downscaled air temperatures in
the year 2000. The differences between climate and thermal regime have important implications for understand-

ing the ecological niche of aquatic organisms (2).

spans the western edge of Bythotrephes invaded
range, including lakes that are likely suitable for
Bythotrephes establishment (i.e., deep, clear, and
cool lakes located near the Great Lakes; Maclsaac
et al. 2000, Branstrator et al. 2006) both within
and outside its current geographical range.

Study species and occurrence data

Bythotrephes is a cool-water species and is sen-
sitive to changes in lake temperature and the
effects of climate change (Kerfoot et al. 2011,
Walsh et al. 2016b). Bythotrephes habitat suitabil-
ity at the western edge of its range is thought to

ECOSPHERE *%* www.esajournals.org

be constrained primarily by water temperature
(Kerfoot et al. 2011), as exposure to the warm
temperatures reached in many of these lakes
(Winslow et al. 2017) can lead to reproductive
failure (>25°C; Garton et al. 1990, Yurista 1999)
and growth rate declines (>20°C; Yurista 1992,
Kim and Yan 2010).

We compiled Bythotrephes occurrence data
from the USGS Nonindigenous Aquatic Species
database, the Minnesota and Wisconsin Depart-
ments of Natural Resources (Minnesota Depart-
ment of Natural Resources 2018, U.S. Geological
Survey 2018, Wisconsin Department of Natural
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Resources 2018), and existing literature
(Branstrator et al. 2006, Kerfoot et al. 2011).
Bythotrephes detection programs (e.g., conducted
by MN and WI DNR either during routine moni-
toring or in response to reports of potential new
detections) are conducted using horizontal zoo-
plankton tows (~100 m in duration using a rela-
tively large, ~50 cm in diameter, and coarse,
>100-pum net) that sample large amounts of water
to increase detection rates (Walsh et al. 2018). We
included multiple recent discoveries of Bytho-
trephes in the USA over the past decade for a total
of 40 inland lake occurrences in the study region
that also have modeled lake temperatures.

Water and air temperature data

We used air and water temperatures modeled
from downscaled climate models (Winslow et al.
2017). Winslow et al. (2017) used global climate
models (GCM) downscaled to a 25-km horizon-
tal grid and a daily output to drive mechanistic
lake models to predict present and future water
temperatures (Notaro et al. 2015). We used the
water temperature predictions from these lake
models for our water temperature niche models
and the downscaled GCM air temperatures for
our air temperature niche models. Future condi-
tions were projected under the RCP8.5 emissions
scenario using six global climate models (see
Appendix S1: Table S1 for descriptions of the
GCM codes used here; Winslow et al. 2017).
Water temperatures for 10,774 lakes in the study
region were modeled as daily depth profiles (this
subset includes only lakes from the USGS
National Hydrography Dataset with observed
depth measurements or hypsometry) using a
one-dimensional lake hydrodynamic model that
uses lake-specific attributes (e.g., clarity, mor-
phology, and surrounding land cover) and mete-
orological conditions (e.g., air temperatures,
precipitation, and wind; General Lake Model;
Hipsey et al. 2019). While data are generated as
raw daily thermal profiles (with an RMSE for
individual epilimnetic temperature observations
of 1.9°C), they can be summarized by different
depths and time periods (e.g., period, season, or
year) as well as common limnological variables
that describe thermal properties (e.g., stratifica-
tion strength or duration). For each summary
variable (e.g., annual mean surface temperatures
in July), we calculated the long-term means from
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the backcasted modeled data (1982-2000) for
model training and contemporary model projec-
tion, and from forecasted modeled data for
model projection in the mid-century (“2050”;
2041-2059) and late-century (“2090”; 2081-2099)
time periods.

In both the water and air model approaches,
we selected a priori thermal variables that are
likely to be tied to Bythotrephes biology while also
weakly correlated with one another (Pearson’s
7 < 0.5; Papes et al. 2016). We used air or water
temperature degree days over 20°C as a measure
of summer heat stress (Yurista 1992, Kim and
Yan 2010) and fall temperatures (mean surface
water temperatures and air temperatures in
October; r*[summer, fall] = 0.26), as fall is impor-
tant for Bythotrephes resting egg production and
overwintering success (Herzig 1985, Walsh et al.
2016b). Finally, we included a lake-specific vari-
able, maximum lake depth (m, log;y trans-
formed), to reflect vertical habitat available to
Bythotrephes in lakes as the species is primarily
pelagic (found in the open water of lakes) and
can migrate vertically in the water column to
avoid stressful surface water conditions (e.g.,
heat stress; Young and Yan 2008). Notably, lake
depth (and other lake-specific variables such as
water clarity or lake area) also plays an impor-
tant role in driving lake-to-lake variation in sur-
face water temperatures (Toffolon et al. 2014).
Log-transformed lake depth is weakly correlated
with mean October surface water temperatures
(r*[fall, depth] = 0.40, r*[summer, depth] = 0.02),
possibly reflecting milder temperature condi-
tions in larger, deeper lakes that are cooler in
summer but also cool more slowly in fall relative
to smaller, shallower lakes (Toffolon et al. 2014).

Ecological niche modeling

We used the machine learning maximum
entropy algorithm, Maxent, to construct the
niche models (Phillips et al. 2006) and developed
the models using the package maxnet in R (note
the alternate spelling of the package name; Phil-
lips 2017). The maxnet package fits environmen-
tal data to occurrence data using lasso
regularization of generalized linear models to
generate the Maxent probability distribution that
can be used to describe site suitability for a spe-
cies. Maxent is particularly useful for niche mod-
eling with presence-only data and allows for
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estimating non-linear effects of predictor vari-
ables (Phillips et al. 2006). To avoid model over-
fitting for projection under future scenarios, we
increased Maxent’s regularization multiplier
from a default value of 1-2, reducing (but not
eliminating) the non-linearity allowed in the
effects of predictor variables (Peterson et al.
2008).

Model evaluation

Invading species represent a particularly chal-
lenging case for niche modeling as species
actively expand their geographical distribution
into regions with many suitable, but unreached
sites (Jiménez-Valverde et al. 2011). Selecting
variables that are a direct representation of envi-
ronmental characteristics that influence species
physiology (e.g., heat stress) prior to modeling,
as we do here, can help address this challenge
(Jiménez-Valverde et al. 2011). Also, many stud-
ies characterize the ecological niche of invading
species in a presence-only framework where suit-
ability score thresholds for predicted presence
are selected to ensure a high degree of model
sensitivity (correctly predicting species pres-
ence), possibly at the cost of allowing more false
presences (Peterson et al. 2008, Papes et al. 2016).
In this framework, false presences do not repre-
sent prediction errors but rather those lakes that
may be habitable ecologically but have yet to be
reached by the species (Peterson et al. 2008,
Papes et al. 2016). Model outputs in a presence-
only framework can be evaluated using a modi-
fied receiver operating characteristic (ROC) anal-
ysis that focuses on evaluating model
performance at high sensitivity (the ROC range
of interest for invading species; see more details
for generating the modified ROC ratio in Supple-
mentary Information; Peterson et al. 2008).
Briefly, models are evaluated using the ratio of
the area under the test curve with a predefined
maximum omission rate (E; here E = 5% or 2 of
40 occurrences) to the area under a 1:1 line repre-
senting the null expectation. Since the x-axis in
this framework is modified to the proportion of
lakes predicted present (rather than the false-pos-
itive rate, as in traditional ROC analysis), optimal
models are defined as those that best balance
model sensitivity and overprediction at a low
omission rate. A modified ROC ratio near one
indicates more potential for overprediction (e.g.,
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a model predicting every lake as suitable would
have a sensitivity of 1 but a modified ROC ratio
of 1).

We compared spatial autocorrelation of pre-
dicted Bythotrephes occurrence from models
developed using air and water temperatures.
Higher spatial autocorrelation likely indicates a
strong effect of broadscale climate patterns on
niche predictions, and lower autocorrelation
would highlight the importance of lake-specific
variables in niche predictions. We used Moran’s I
to compare spatial autocorrelation of predictions
from both models (both in terms of the raw Max-
ent suitability score and in terms of binary pre-
dicted presence wusing a suitability score
threshold that accurately predicts 95% of known
presences).

While we present model results and projec-
tions using models fitted with all lakes, we also
evaluated each model’s predictive ability by
withholding 10% of lakes from model fitting for
testing, then training models with the remaining
lakes over 1000 random iterations for each of the
four model formulations (air vs. water tempera-
tures with and without lake depth). We evalu-
ated predictor variable importance by removing
each variable from the model and measuring
model performance using the modified ROC
ratio (i.e., jackknifing).

REsuULTS

Model fitting

Generally, Bythotrephes is found in lakes that
are relatively deep, warm in fall, and cool in
summer (Fig. 2a). Both niche models—models fit
using downscaled air temperatures (air models)
and those fit using modeled surface water tem-
peratures (water models)—reveal a negative
effect of summer heat stress (degree days >20°C)
and positive effect of lake depth (log;p maximum
depth in m) on Bythotrephes suitability (Fig. 2b—
g). However, the models differed in the effect of
fall temperatures (mean surface water or air tem-
peratures in °C in October) on suitability. Fall
surface water temperatures had a weak positive
effect on Bythotrephes suitability in the water
models, but fall air temperatures did not affect
suitability in the air models. Variable effects
remained consistent when modeling with and
without lake depth, except for the effect of fall
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Fig. 2. Raw modeled lake temperature data are plotted in a: Lakes are plotted as filled circles colored by lake
depth according to the key. Bythotrephes known presences are highlighted as larger triangles outlined in red. Vari-
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surface water temperatures. Fall surface water
temperatures positively affected suitability when
modeling without lake depth (Appendix SI:
Fig. S2), but this effect was u-shaped when mod-
eling with lake depth (minimum suitability
between 6° and 12°C; Fig. 2e). Fall air tempera-
tures negatively affected suitability when model-
ing without lake depth (Appendix S1: Fig. S2)
and did not affect suitability when modeling
with lake depth (Fig. 2b). Since there was little
variation in models fitted from different GCM
projections (Fig. 2b—g), we averaged maxent suit-
ability scores across the models fit using the six
different GCM air and water temperature projec-
tions to evaluate air and water model predictions
and fit.

Cross-validation results

Because we were more interested in correctly
predicting presences (i.e., high model sensitivity)
for the case of an invading species, we used a
modified AUC ratio to evaluate model predictive
ability with cross-validation (Appendix Sl:
Fig. S3; Table 1). By the modified AUC ratio, all
models performed well (ratio >> 1, where 1 indi-
cates a model that overpredicts all lakes as suit-
able while correctly predicting 95% of known
presences). The air model resulted in the lowest
modified AUC ratio, but the improvement in the

Table 1. Comparison of the air and water model
formulations.

Evaluation

metric Model formulation Air Water
Modified Summer + Fall + Depth 1.97 (0.05) 1.97 (0.06)
AUC ratio Fall + Depth 1.96 (0.06) 1.96 (0.06)
Summer + Depth 1.96 (0.06) 1.96 (0.06)
Summer + Fall 1.80 (0.21) 1.95 (0.08)
True-positive Summer + Fall 0.99 (0.04) 0.99 (0.04)
rate Summer + Fall + Depth 0.98 (0.06) 0.96 (0.10)
Fall + Depth 0.98 (0.07) 0.98 (0.08)
Summer + Depth 0.98 (0.07) 0.98 (0.07)

Note: Air and water model formulations compared
(summer = degree days >20°C, fall = mean surface water
temperatures or mean air temperatures in October in °C,
depth = log;, lake depth in m) by calculating a modified
AUC ratio (where a ratio near 1 indicates a model that
predicts all lakes as present; Peterson et al. 2008) and the
true-positive rate (proportion of out-of-sample occurrences
accurately predicted by the model) over 1000 cross-validation
simulations (mean with standard deviation in parentheses)
where we withheld 10% of the data for evaluating model
predictions.
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ratio from the air to the water temperature
model was variable over all cross-validations
(mean(ratioyawer — ratio,,) = +0.14, SD = 0.22, p
(0) = 0.22; Table 1). Also, all models predicted
out-of-sample presences at an extremely high
rate (>0.95; Table 1), likely reflecting thresholds
selected to produce modes with high sensitivity
(E = 5%).

Lake depth was the most important variable
for improving model performance, and models
that included either summer or fall temperatures
and lake depth outperformed models that
included both summer and fall temperatures
without lake depth (Table 1). To contrast air and
water models, we compared the air and water
models (with both summer and fall tempera-
tures) with and without lake depth.

Model projections

We projected and compared model outputs
using final models fit from all known occur-
rences. When modeling with downscaled air
temperatures alone under contemporary climate
conditions, geographical patterns in Bythotrephes
suitability followed closely with patterns in cli-
mate (Fig. 3a) with high spatial autocorrelation
(Moran’s I of the raw suitability score = 0.40;
Table 2). The air model contrasted with suitabil-
ity patterns from the water model which were
more spatially independent (Fig. 3c; Moran’s I of
the raw suitability score = 0.20; Table 2). The air
model predicted 89% of lakes to be suitable
under contemporary conditions (Maxent suitabil-
ity score at least as high as the 5th percentile of
known presences), again differing from the water
model which predicted 42% contemporary suit-
ability. Adding lake depth to the niche models
decreased spatial autocorrelation in both models
(Table 2), leading to more spatially independent
predictions of suitability (Fig. 3b, d), and more
comparable predictions of suitability (39% of
lakes suitable with the air model compared to
30% suitable with the water model).

Bythotrephes suitability declined under the
mid- and late-century climate scenarios leading
to fewer suitable lakes in the study region with
both air and water models. However, the mag-
nitude of the decline varied considerably
between modeling approaches (Fig. 4). The air
models, which predicted nearly all lakes to be
suitable under contemporary conditions,
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Fig. 3. Prediction map under contemporary conditions for each of the four niche models. Predicted presences
are in black, predicted absences are in grey, and observed presences are in red diamonds in each panel.

Table 2. Moran’s I values of spatial autocorrelation in
the air and water model predictions of lake suitabil-
ity for Bythotrephes.

Model output Model formulation ~ Air ~ Water
Raw suitability score ~ Without lake depth ~ 0.40 0.20
With lake depth 0.19 0.15
Binary prediction Without lake depth ~ 0.26 0.15
With lake depth 0.13 0.10

Notes: Higher values of Moran’s I indicate higher spatial
autocorrelation. Models are compared with and without lake
maximum depth, and suitability is represented as the raw
suitability score output from the Maxent algorithm and bin-
ary prediction as present or absent based on a threshold
score. All I values are highly significant (P < 0.001, calcu-
lated by comparing I to 1000 random permutations of each
score or prediction using the same spatial weighting scheme;
Cliff and Ord 1981), suggesting some degree of spatial auto-
correlation in each case.

ECOSPHERE % www.esajournals.org

predicted just a single suitable lake in the late
century scenario, compared to 19% future suit-
ability with the water model. Suitability differ-
ences declined with lake depth added to the
models, but suitability was still almost twice as
high in the water model (16% compared to
8.8% in the air model).

Model predictions and projections were sensi-
tive to the suitability score threshold selected for
predicted presences (here, a maximum omission
rate of 5%). However, the general patterns in
contrasting the air and water models are consis-
tent across a range of model thresholds (see
Appendix S1: Fig. 54 for tests ranging the maxi-
mum omission rate from 0% to 10%, or 0 to 4
false negatives, respectively).
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perature model predictions are plotted in dashed orange lines and triangles, while water model predictions are
plotted in blue circles and solid lines. The models were fitted with temperature variables alone (a) and with tem-
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DiscussioN

We contrasted two niche modeling approaches
for an aquatic invasive species: (1) modeling
using air temperatures projected from down-
scaled climate models and (2) modeling using an
estimate of water temperatures from mechanistic
models driven by the downscaled air tempera-
tures and other meteorological variables (i.e.,
long and shortwave radiation, air temperature,
wind speed, relative humidity, rainfall, and
snowfall; Hipsey et al. 2019). Because we forced
models to have high sensitivity (sensu Peterson
et al. 2008, Papes et al. 2016), by definition all
models accurately predict known presences out-
of-sample. However, each approach produced
very different pictures of Bythotrephes suitability
in our study region (i.e., differing potential for
overprediction; Peterson et al. 2008). All models
predict the number of suitable sites in the study
region, the western edge of Bythotrephes invaded
range, to decline with climate change. Declining
suitability contrasts with more common reports
of aquatic invasive species range expansion with
warming (Rahel and Olden 2008). The air model
predicted the vast majority of lakes as suitable
under contemporary conditions and just a single
lake as suitable under late century conditions,
and suitability was spatially autocorrelated,
reflecting broad patterns in climate. The water
model predicted 42% contemporary suitability
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which declined to 19% under late century condi-
tions, and suitable lakes were more indepen-
dently distributed in the study region, reflecting
lake-specific thermal regimes. The water temper-
ature and lake depth model predicted that 30%
of our study lakes are suitable under present-day
conditions, declining to 16% of lakes under
future conditions (26 of 40 known presences and
1654 of 10,734 background lakes). As in the pre-
dictions under contemporary conditions, these
suitable lakes are distributed across the study
region (Fig. 5).

Both air and water temperature models accu-
rately predict current distribution of Bythotrephes
but predict dramatically different future condi-
tions. The different projections resulting from
using air or water temperatures highlight impor-
tant nuances in thermal habitats that are only
captured in the water models. For example, if
temperatures exceeding 20°C are a physiological
limitation for Bythotrephes growth and reproduc-
tion (Yurista 1992, Kim and Yan 2010) that has
limited its current distribution within its invaded
range (Kerfoot et al. 2011), we can illustrate the
distinction between using air temperatures and
water temperature using a simpler model: the
number of lakes that are at least as cool as the
warmest lake with a population of Bythotrephes.
For example, 2012 lakes are predicted to have
fewer degree days >20°C than the warmest
known Bythotrephes occurrence (coincidentally,
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Fig. 5. Late-century model (water temperature and lake depth as predictors of suitability) predictions of suit-

ability broken into four categories: lakes predicted as suitable under both contemporary and late-century climate

conditions (a), lakes predicted as unsuitable under contemporary conditions but suitable under late-century con-
ditions (b), lakes predicted as unsuitable under both contemporary and late-century conditions (c), and lakes pre-
dicted as suitable under contemporary conditions but unsuitable under late-century conditions (d).

19%); however, just one lake is predicted to expe-
rience fewer degree days >20°C using air temper-
atures (also the same as the model prediction).
These large differences further highlight the
importance of understanding heterogeneous
ecosystem responses to climate in order to under-
stand species responses to climate change (Levin
1992, Kearney and Porter 2009, Dobrowski 2011,
Nadeau et al. 2017), particularly for aquatic
organisms that do not experience air tempera-
tures directly.

Lakes that were deep, relatively cool in sum-
mer, and warm in fall were more suitable for
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Bythotrephes (Fig. 2). Four extremely warm lakes
(250 degree days >20°C and surface tempera-
tures in October exceeding 12°C; Fig. 2a) shaped
Bythotrephes fall temperature response curves,
where the air and water models differed most
significantly (Fig. 2b, e). These lakes are dis-
tributed across the study region, located in both
Wisconsin (the Madison chain of lakes; Lake
Mendota, Lake Monona, Lake Waubesa, and
Lake Kegonsa; note that Monona and Waubesa
are one water body in the medium resolution
National Hydrography dataset) and Minnesota
(Mille Lacs Lake). Both the air and the water
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models predicted suitability in Lake Kegonsa to
be below the threshold for suitability, while the
air model also predicted suitability in Lakes
Monona and Waubesa to be below the threshold.

Bythotrephes populations in these four lakes
share similar seasonal and long-term population
dynamics that, in the context of our results here,
might inform our understanding of Bythotrephes
response to climate change. In each of these
lakes, population densities plummet in mid-
summer as surface water temperatures warm to
exceed Bythotrephes thermal optimum in late July
and early August, and recover to high densities
in fall as temperatures cool (Jodie Hirsch,
MNDNR, personal communication; Walsh et al.
2016b, 2019). These lakes were previously
believed to be thermally unsuitable for Bytho-
trephes (Kerfoot et al. 2011), but may now repre-
sent an important thermal regime characterized
by hot, unfavorable summers paired with war-
mer or longer favorable fall conditions that allow
Bythotrephes to persist in otherwise unfavorable
climates (e.g., southwestern lakes in Fig. 5a and
most lakes in Fig. 5b). Similarly, in a previous
study (Walsh et al. 2016b), we used temperature-
dependent population models to demonstrate
how unusually cool conditions in the summer of
2009 may have led to Bythotrephes outbreak in
Lake Mendota. At the time, we hypothesized
that a pattern of outbreak under favorable condi-
tions may provide rationale for the timing of
Bythotrephes detection in Mille Lacs Lake, also in
2009 (Appendix S1: Fig. S5). In short, we found
that Lake Mendota demonstrates the potential
for climate stochasticity to drive temporary
changes in suitability that lead to abrupt and per-
sistent changes in invasive populations. While
climate change is underpinned by long-term
gradual change, abrupt ecological changes are
increasingly common and understanding them
depends on detailed ecosystem-specific under-
standing (Ratajczak et al. 2018).

Our results suggest that lake depth will be a
critical factor influencing Bythotrephes response
to lake warming in the study region, which may
reflect broader patterns in cool-water species
responses to climate change. In addition to our
modeling results here, Bythotrephes is typically
found in deep lakes in its invaded (Branstrator
et al. 2006) and native (Maclsaac et al. 2000)
ranges. Lake depth plays an important role in
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providing moderate summer and fall conditions
—relatively large, deep lakes tend to be cooler in
summer and warmer in fall (Toffolon et al. 2014).
The effect of lake depth on surface water temper-
atures is consistent with the effect of surface
water temperatures on Bythotrephes suitability
(cooler summers and warmer fall surface temper-
atures are associated with higher suitability). As
a result, in addition to providing cooler deep-
water habitat, more moderate surface water tem-
perature conditions in deeper lakes may lessen
the effect of climate change on cool-water aquatic
species and serve as refuge habitats in otherwise
unsuitable regions. The importance of lake depth
as vertical habitat for Bythotrephes has been
described in detail in the case of the deep, cool,
alpine Lago Maggiore. Warming in Lago Mag-
giore likely resulted in increases in Bythotrephes
abundance due to the emergence of a low-light,
warm-water refuge from predation as the top of
the hypolimnion deepened in the lake (Manca
and DeMott 2009). So, while lake warming may
have obvious negative effects on Bythotrephes
suitability in shallow lakes in our study region,
responses may be more nuanced in larger, dee-
per lakes as a result of changes in vertical tem-
perature profiles (as in Lago Maggiore) or late
season surface temperatures (here).

Despite our prediction of a reduction in the
number of lakes that are suitable for Bythotrephes,
we predict many lakes to remain suitable in the
region with warming (Fig. 5a, b). If Bythotrephes
range expansion has been limited by its opportu-
nity to reach these sites (as it has been histori-
cally; Gertzen et al. 2011), we expect Bythotrephes
to continue to expand its range as it invades the
many suitable lakes in the region. While seem-
ingly paradoxical, this conclusion may be impor-
tant for managing cool-water invasive species:
Aquatic invasive species prevention efforts
should not be curtailed because of expected
range contraction due to climate change. Our
ability to identify the relatively small number of
lakes that may or do provide refuge to aquatic
invasive species (or, conversely, imperiled or
declining native species; Hansen et al. 2017)
allows us to prioritize management efforts, as in
the case of conservation planning using terres-
trial microrefugia (Keppel et al. 2015, Morelli
et al. 2016). For example, using either of our
models, the number of lakes predicted to be
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suitable for Bythotrephes populations was greatly
reduced under future climate conditions. We pre-
dicted roughly one fifth of lakes in our study
region to be thermally suitable for Bythotrephes in
the late century (or a single suitable lake in the
air model). Targeting invasive species prevention
and outreach efforts to suitable northern lakes
that are relatively deep, cool in summer, and
warm in fall would allow for more efficient allo-
cation of management resources in the region
(sensu Stewart-Koster et al. 2015).

Predicting the response of aquatic species to
climate change

Air temperatures and basic lake characteristic
data (e.g., lake depth) are often widely available
relative to modeled or measured lake water tem-
peratures. Since lake depth is a primary driver of
the lake-to-lake variation in surface water temper-
atures (Toffolon et al. 2014), including lake depth
in the air temperature model may provide as
much predictive power as water temperatures
alone. This specific case raises a question with
both basic and applied relevance for predicting
aquatic species responses to climate change: Does
a combination of air temperatures and lake depth
provide an adequate substitute for water temper-
atures? Adding lake depth to the air model
reduced air and water model disagreement from
53% to 22%. However, the remaining disagree-
ment in the models was still biased whereby the
air temperature and lake depth model underpre-
dicted suitability in cool, shallow lakes that were
relatively warm in fall, and overpredicted suitabil-
ity in warm, deep lakes that were relatively cool
in fall relative to a water model. The differences
highlighted by this comparison make clear the
importance of additional lake characteristics other
than lake depth (e.g., lake area) in determining
lake thermal regimes and suitability.

There are several fundamental challenges inher-
ent to modeling how species are projected to
respond to climate change (Peterson et al. 2018);
here, we present some specific caveats to our
approach. Overprediction (e.g.,, a high false-posi-
tive rate) serves a purpose in niche modeling by
identifying a species potential range which is fun-
damentally broader than its observed range (Peter-
son et al. 2008, Jiménez-Valverde et al. 2011). Yet,
the best approach for evaluating niche models, par-
ticularly for invading species, is to balance high
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model sensitivity and overprediction (after all, one
path to achieving high model sensitivity is to pre-
dict all lakes as suitable; Peterson et al. 2008). By
deemphasizing the modeling importance of
absences (or just background lakes here), we
needed to take additional steps to ensure that our
occurrence data and modeling approach led to pre-
dictions that represented Bythotrephes potential
range. To do so, we updated our understanding of
Bythotrephes occurrence in our study region
(though our models would be improved further by
including occurrences from other invaded ranges,
e.g., Canada, or Bythotrephes native range) and cali-
brated our models to avoid overfitting (Jiménez-
Valverde et al. 2011).

While we use climate projections from six
GCMs, we only project under the most extreme
scenario (RCP8.5). However, present-day carbon
emissions reflect the RCP8.5 scenario used here
(Hayhoe et al. 2017, Le Quéré et al. 2018). While
GCM uncertainty accounts for the majority of
uncertainty in mid-century air temperature pro-
jections, RCP uncertainty becomes increasingly
more important in late-century scenarios (possi-
bly as high as 70% of total variance in 2090;
Northrop et al. 2014). Therefore, we note that
late-century projections of lake suitability for
Bythotrephes may change with differing long-
term trajectories in emissions.

We also focused our measure of lake suitability
on temperatures and physical habitat, and many
biological and chemical factors not included here
are likely to influence Bythotrephes persistence and
population growth rates in lakes (e.g., water clar-
ity, predator abundance; Young et al. 2011). There-
fore, in an applied context, we advise using these
projections as a first pass at lake suitability that
provides a coarse estimate of contemporary and
future thermal suitability for Bythotrephes in the
absence of adaptation, preceding more detailed
predictions from review of the literature con-
ducted in other ecological modeling contexts (e.g.,
Maclsaac et al. 2000, Branstrator et al. 2006, Gert-
zen et al. 2011, Weisz and Yan 2011, Gertzen and
Leung 2011, Young et al. 2011, Jokela et al. 2011,
Kerfoot et al. 2011, Muirhead and Maclsaac 2011,
Potapov et al. 2011, Wang and Jackson 2011).

The contrast between using air and water tem-
perature predictors may be more obvious when
modeling habitat suitability for other aquatic
species. Since we were constrained by the
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number of Bythotrephes occurrences for presence-
only modeling (40 lakes), we used a small num-
ber of relatively simple water temperature vari-
ables for prediction here. However, many more
are available with advances in lake temperature
profile modeling (Winslow et al. 2017, Hipsey
et al. 2019, Read et al. 2019). Further, multiple
additional metrics can be computed from daily
temperature profiles (e.g., stratification measures
or the onset/duration of lake thermal properties)
that may better link to the physiology of other
aquatic species.

Aquatic species responses to climate change

Modeling habitat suitability depends on select-
ing predictor variables that link directly to species
physiological limitations and requirements, par-
ticularly in the cases of modeling invasive species
suitability and predicting species responses to cli-
mate change (Jiménez-Valverde et al. 2011, Blaise
et al. 2017). The conditions that determine species
thermal suitability are a result of the interaction
between habitat features and climate (e.g., the
effect of canopy cover in forested and urban
ecosystems; Ziter et al. 2019), and therefore, cli-
mate data alone fail to account for the broader
range of thermal characteristics that allow species
to persist in habitats. For aquatic species, regional
variation in lake thermal regime mirrors the varia-
tion in local terrain that can lead to spatial hetero-
geneity in habitat suitability (Benson et al. 2000).
We used predictor variables that are closely linked
to Bythotrephes physiological limitations (Yurista
1992, Kim and Yan 2010), and our results closely
match previous ecological understanding of
Bythotrephes optimal thermal range. We found
that the water temperature model limited the
potential for overprediction compared to the air
temperature model. Additionally, selecting vari-
ables that link directly to Bythotrephes physiology
may be the best ecological argument for selecting
the water models over the air models in our study.
As such, we must continue to refine and expand
our understanding of habitat (e.g., lake) responses
to climate change to better predict species
responses to climate change.
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